Archivo del sitio

Banda de Möbius

Continuando con las figuras geométricas que han sido de gran relevancia en la matemática, como ha sido la Trompeta de Torricelli o la Botella de Klein, esta vez el Team Mask hablara de una superficie con una sola cara y un solo borde, llamada Banda de Möbius. ¿Cómo así?, Superficie que tiene una sola cara, aunque aparentemente se piense que tiene dos por ser una banda.

Tiene la propiedad matemática de ser un objeto no orientable. También es una superficie reglada. Fue co-descubierta en forma independiente por los matemáticos alemanes Johann Benedict Listing y August Ferdinand Möbius en 1858.

August Ferdinand Möbius (17 de noviembre de 1790, Schulpforta, Sajonia, Alemania – 26 de septiembre de 1868, Leipzig) fue un matemático alemán y astrónomo teórico. Es muy conocido por su descubrimiento de la banda de Möbius, una superficie de dos dimensiones no orientable con solamente un lado cuando está sumergido en el espacio euclidiano tridimensional.

Fue descubierta independientemente por Johann Benedict Listing casi al mismo tiempo. Möbius fue el primero en introducir las coordenadas homogéneas en geometría proyectiva. La transformación de Möbius, importante en geometría proyectiva, no debe ser confundida con la transformación de Möbius de la teoría de números, que también lleva su nombre. Se interesó también por la teoría de números, y la importante función aritmética de Möbius μ(n) y la fórmula de inversión de Möbius se nombran así por él. Era descendiente de Martín Lutero.

La banda de Möbius posee las siguientes propiedades:

Tiene sólo una cara:

Si se colorea la superficie de una cinta de Möbius, comenzando por la «aparentemente» cara exterior, al final queda coloreada toda la cinta, por tanto, sólo tiene una cara y no tiene sentido hablar de cara interior y cara exterior.

Tiene sólo un borde:

Se puede comprobar siguiendo el borde con un dedo, apreciando que se alcanza el punto de partida habiendo recorrido “ambos” bordes; por tanto, sólo tiene un borde.

Esta superficie no es orientable:

Una persona que se desliza «tumbada» sobre una banda de Möbius, mirando hacia la derecha, al dar una vuelta completa aparecerá mirando hacia la izquierda. Si se parte con una pareja de ejes perpendiculares orientados, al desplazarse paralelamente a lo largo de la cinta, se llegará al punto de partida con la orientación invertida.

Otras propiedades:

Si se corta una cinta de Möbius a lo largo, se obtienen dos resultados diferentes, según dónde se efectúe el corte. Si el corte se realiza en la mitad exacta del ancho de la cinta, se obtiene una banda más larga pero con dos vueltas; y si a esta banda se la vuelve a cortar a lo largo por el centro de su ancho, se obtienen otras dos bandas entrelazadas pero con vueltas. A medida que se van cortando a lo largo de cada una, se siguen obteniendo más bandas entrelazadas.1 Si el corte no se realiza en la mitad exacta del ancho de la cinta sino a cualquier otra distancia fija del borde, entonces se obtienen dos cintas entrelazadas diferentes: una idéntica a la original pero más angosta y la otra con el doble de longitud y una vuelta completa.

Este objeto se utiliza frecuentemente como ejemplo en topología.

Y así el Team Mask les mostró una figura poco conocida o que por lo menos en los centros educativos no la estudian ni la analizan y que ahora conocen y podrán investigar acerca de ella.